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Accuracy: 2v-2, = 0(h)
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T W [(V—N+l,j V—N,j)(-zj +§(]+l) -g(:]"].) )
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| + (V¢N+l,j—1 VﬁN,j—l)(] +(j-1) tr(i-1) -3 )]
{
'a
Accuracy: u_ = v = 0Ch)

And similarly for T
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Linear Triangular Elements near the Parabolic Line

To avoid the inconsistency near the parabolic line
for small values of j, (near j = 0), we must change
the trial functions near the parabolic line for the same mesh

points

x
n

(i+-;L)h

<
n

.
14 ¥y = Gghld

and take ordinary triangular elements with linear variation in

¥ and y, and linear approximations to 'y and T, near the

parabolic line.

Let the approximated domain be D, and the approximated

characteristics, T, and fz.

Fer 7 .« jo the trial functions will be linear in x,y.

For j 3 j; the trial functions will be linear in &,n.

The variational formulation is:

Jlu,vyd) = Jf[yuz—v2+k(uy-vx)]dxdy + [ A(udx+vdt)
D T

For j

W

j0 + 1 all the elements belonging to the mesh point

(i,j) are isoparametric, so the schemes are the same as in

chapter 3.




For j = ]0 the trial functions are linear in

linear in

For 1 % jo - 1 all the elements belonging to

ordinary triangles.

A) Interior Points

e A Y
Cfxq
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we (G 3, Youd(s /34 (541)
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Taylor expansion gives that the order of the equation is:
2 < .

GCh™) for 3 4 Jg = 1

G ChY for § = jO

for sufficiently large values of j. For small values of

accuracy of the equations can be less.

j

(2¢)

the
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B) Boundary Points for the Cauchy problem

FiCu,v,d) = Jj[yuz—v2+A(uy-vx)]dxdy +

B r

a) mesh points on T

-3 = dp
(?vsx*)
2 T (u,v,A) = 0 =
Ju 1 22 i
-N,.
L33 /3 S8 9.10/3 10/3
6+ (Fh) [u_N,j+l(lTJ t3%d ( +1)
Lo/g L 1t =278 2/°3
+ u-N+l,j(~TEJ —Eﬁ(J-l) -5 (3-1)
3.7/8 98.10/3 27-13/3 27 13/3
1) C7ed taTed tatoldtD) )
J:8/3 ‘L /3.  2.2/3 75 2/3
+ -N,](loj Tﬁ( j=1) 1—5] (]-l)
3,7/3 9:10/3_ 27-13/3 Sk L3/3
1 2/3 L 2/3
U-N+1,j-l(l2j 2(J—l) )

i

A (udx+vay)

14T 5
81.137/3 .81 13/3.
*3109 ~gTo¢I*L) ’

(3a)
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b) mesh points on the parabolic line: j = 0

((..‘4:‘)

and

gi (usvs,d) = 0 =
i,0 .
WELZ
—~—;T7§— [(Vi,l-vi-l,l)+(vi+l,O-Vi-l,O)]

= 2 +u. - y +u. .
3(u ul—l,l) (uul 0 u1-1,0+u1+1,0)
This scheme is consistent and the order of the equation is:

=t 0(h2/3)

y
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(=v4)
(i,7) = (-N,0) r
(—".o (‘N44,°)
U_N,0
and
v ¥
~N,0 are given
aiJ (uyvyd) = 0 =
-N, 0
3.2/3
‘3 ( : g u—N,0+u-N+l,0)
173 VeN+1,0"V=N,07 © ‘Yon,1 2
u. = v F 0(h2/3)
(M-4,4)
1,53 = (N,0) -|:,z Un,o and
Uy,q is given
N,o0)

(N—10)
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Comparison of the Approximations

type of linear in £,n in linear in x,y in linear in §,n
~dpproximation @ll the elements all the elements for yYs

) linear in x,y

for yxy.
- o s — - J
0 6 51, 2v. #0CHY %) g sw +0tHe %) u_=v_+0Ch?’%)
y x ¥ %X y o x
l u =0.88v_*0Ch2’ ) uw sv +0(n?’d u =1, 000w
y x y Vx y X
+0(h2/3)

One can see that if we take j0 = 1 we can already get a nearly

‘ consistent scheme:

; u, = 1.01hkv  + 0(h2/3) for 4§ =

i

j0
2/3

30 only for very small values of h for which h << U.01 1%

15 worthwhile to increase the value of

ig:

P g e e ey ——— —
\ . \




5. Cauchy problem for the Tricomi equation-Local Formulation

A) Triangular Isoparametric Elements

We divide the domain into triangular isoparametric
elements and take the same trial functions as before.
Let E'*J be the element bounded by vy = ¥5.1 and the two

characteristics Si’J and S;’J which intersect in the mesh point

(xi,j’yj):
Si’j C n = ih (‘.'la‘) 13
b € i
1,3 Sﬁ‘ Sy
8% 1 £ = (i+j)n
2 .
e +4, 1-4
Y )) h W‘;{ 9 )
Ste 1 G = By e 2N)

We assume that the solution (u,v,A) is known at step j-1,
so the problem is well-posed in element E'*J with the free bound-
aries Si’] and S;’j. We take the variaticnal formulation in

every single element

Ji’j(UaV,A) = JJ [yuz_V2+}\(uy—Vx)]dXdy

pvd

+ J A(udx+vdy) i==N,y...4+N=J
1yjyqisi
Sl 082

and we assume that A is kept fixed on the free boundaries.

O e ——— e e —————




e

%E—~TJL’J(U,V,A) = 0 =

140 .

(En*/3.13 ui,j(j7/3’ 3(5-1)10/3_8510/8_215_,,18/3,21,13/3,
+ (ui,j—l+ui+1,j~1)(%(j"1)7/3+%(j'1)10/3 331073, 205_1,18/3

- At
"By £ L e =L (1a)

S gt du,v,) = 0 -
1,)
=0/ 3, 8/3 8/3 27 ll/3 27 10/3
Vi,j(2J -7(]-1) ~3j 55( -1) t55) )
C 548, 34 8/3 3. 8/3 24 2178 27.11/3
+(vi’j~1+vi+l,j_l)((j—l) +5(3-1) & e~ -5 )
1 : 5/3 5/3 3 8/3 3 8/3
= = =X o - 1b
F541,5-172,5-1(G-D) 3= (1b)
3 gbdu,v,a) = 0 -
il
2/3
L1 ) : ( )
- wdkad=l 341 0=1 _ 10, = 5/3
o M, Qafeasmy s ‘;T7§ Vie1,5-171,5-00 G HGD°
+ 2(3-18/3 - 35873, (1c)
The solution of step j-1 gives immediately vVii (1b) and Ui 3 (lc)
’
and substituting u, . into (la) we get A, ..
'LQJ 1,)

" = ST N i ————
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Step 0: the parabolic line

g«
ui,O and vi,0 are given.
(40) (1+4,0)
v is not known.
i,0
3§——— Jl’l(u,v,x) = 0 =
i o0
35 02:/°3
R i 71 ok P O s ey fhes
i,1 2 7 S i i+1,07Vi,0 -
On the other side (lc¢) for Jj =1 will give
,i Jl’l(u,v,A) = 0 =
s 0%
Wy WL (ih)?/3
u, o - 220 373,80 . B 3 (v s o) (1ii)
Tyl 2 10 h17§ 1EL 0 1,0 '

ui,O,ui+1,0’ vVi,0° Visl,0 are known, so (1i) and (1ii) give a

different value for us 4 and Ai 0 is still unknown. So we
b ] b ]

cannot take the variation of A on the parabolic line and must

get the values of Ai 0 in another way:
.

The analytic connection between A and v on the parabolic line
18

2v = Ax.

So we can get the values ¢ Ai 0 by numerical or an:lytic inte-
9

gration, because we know the values of Vioo
9
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B) Linear elements

For . 7 3 jO the elements E¥’J will be as before (triangu-
lar isoparametric and the trial function linear in §£,n.
Eon 7 & j0 the elements E'’J will be ordinary triangles

bounded by y = yj-l and the linear approximation of the charac-

teristics ii’J and §;’] which intersect in the mesh point
( S
*1:39
..)
(4
Step i (3 = 1,...,3,) *

We assume that the solution (u,v,A) is known at step j-1.

We take the variational formulation in every single element

Ji’j(u,v,x) =

ol —

I [yuz-v2+k(uy—vx)]dxdy + f A(udx+vdy)
i,j ‘isj "iaj
Sl U82

i==N,y...,+N=j

AR . i DR —




and we assume that X 1is kept fixed on the free boundaries.

— jL’J(u,v,A) = 0 =

S w2 3 2288 2/ 3 1l W2/ . 2/3

(7h) « (] -(3-1) )'Tﬁtui,jcsj +4(5-1) )
o 2/3 . 2/3
+ (Ui,j—l+ui+l,j—l)(2] +3(j-1) )1
. H\s .

= ek Akl -1

“l,j 2 (2a)

3 7, )
el (uyvyd) = 0 =

1s])
2V + v $ = Z(A. =) TR ¢2b)
g 1,3=1 I Lyn=1 h ttlyg=1 "dyg<~l
o 'ia..l( o
. . J UsVaAd) = 0 =

147

3:2/83
5 I T y (=)
_  La=d A Loe} . W :2/3_ . 142/3 g
L 7 v R e R T el ST
(2¢)

We get again 3 explicit equations for ui,j’ vi,j’ Ai,j'

A i - — —p— —




solid or dashed portions admissible depending on whether
(po,qo) is upstream or downstream.

Lo+ J5 ) ﬁi l

b7y ( I_J-g)' |°.J - 4 %’

f ~

A

Fig. 2: Allowed shocks for entropy function U
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[TI. A class of pairs of mixed type.

We consider the class of pairs of equations

E'(p)x-qy = 0

¢3ed)

which corresponds to (2.6) with u = (p,q)T

g
(3.2) o(p,q) = E(p) + 4 /> ¥(p,a) = -pq

and admits a corresponding entropy function
2
(3.3) U(p,q) = ued -0 = pE' (p)-E(p)+9 /55 F(p,q) = -pq.

As in the sample problem (1.2), which is of course a
special case of (3.1), there exist other functions U, ?
such that (1.14) holds, for example

2
(3.4) Ulp,q) = q&'(p), Fp,q) = -&(p) - 17/,

The system (3.1) is hyperbolic whenever ¢E"(p) > 0;

the specific assumptions we make on £(p) are

F ey — S LSS AR T W
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1
[
1
(3.5 ENCp) > 0, p 2 0, ENep) <0, p < O, |
J
€ 3.6 (S om0 S o T~ 0

the assumption (3.6) assuring that the system is strongly

nonlinear in the sense of [11] in the hyperbolic region.

Without loss of generality, we take £(0) = £'(0) = 0. ‘
The Rankine-Hugoniot relations (2.11), describing which

states (p,q) can be connected to a given state (po,qo)

are in this case
€3.7) sin6(g'(p) - 5'(p0)) + cose(q—qo) = 0.
(3.8) sine(q—qo) + cose(p-po) = 0.

From (3.7, 3.8), it is clear that there are no shocks
with 6 = 0, but shocks between the elliptic and hyperbolic
regions with 6 = in/2 may exist. From (3.2, 3.8), we easily
obtain

' = 1
E'ip) j (po) 2

(3.9) = got 9 3 03
p'po b i

since the elliptic region (p<0) 1is convex and ¢£'<0 there,

we have




Theorem 3.1: There are no shocks connecting two states

in the elliptic region.
Let us therefore take (po,qo)EH, qq = 0 without loss
generality, and ask about the shape of the curve F(po,qo).
rom (3.6), we know that 6' # 0 (prime denoting differen-
tiation along T) on each branch of F(po,qo). Then from
(3.8) we have

Theorem 3.2: Each branch of of F(po,qo) is star-

shaped about the point P19

It follows froa (3.6, 3.8, 3.8) that for p < Pg

=99 1/2
E3LT0) cot| = < (£"(p,))
|“* | !p_p0| & po
and then from Theorem 3.2 and (3.10)

'heorem 3.3: For (pO,qo) € H, the two branches of

Y(po,qo) initially in the direction of decreasing p must
enter the elliptic region. These two branches will eventual-
ly join (as in Fig. 1 above) if §&'(p) = &'(po) for some
p<b. If E"p) < E'(po) for all p < 0, the two branches

will remain apart, as shown in Fig. 3 below.




(3.11) -sinB[UJ+cosB[F]

(3.12) -sin6[Ul+coso[¥]

_Fig. 3¢ F(po,qo), (po,qo) ENHISNE BGpHE< g’(po) for all p<o0

The situation described in Fig. 3 can only arise for
sufficiently large Pys for small positive Pgs F(po,qo)
will be as shown in Fig. 1. For (po,qO)EE or on the
boundary between E and H, the curves of F(po,qo) res-
emblé those of Fig. 1.

The entropy inequality (2.18), applied to (3.3), (3.4)

respectively, gives

Sine[ﬁ(p)-ﬁ(po)-%-(p-po)(E' (PI+E" (py )1,

£(p)-E(py)

sine(q-qo)[—ﬁ-_—l;o—-—— - %—(E'(p)‘*&'(po))].

Exactly as in the sample problem (2.2), the entropy func-

tion U 1leads to a division of F(po,qo) with respect to

— e a— e —
i,
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P-pys and the entropy function ¥ to a division of F(po,qo)
with respect to q-9qq - Alternatively, the inequality (1.1u4) '
as applied to the entropy function (3.3) 1is equivalent for

piecewise smooth solutions to the inequality
(3.13) p. < +o;
(1.14) with the entropy function (3.4) is equivalent to f
(3.1k) q., < +oe,
It is quite natural that different entropy functions
should give different admissible shocks, as they correspond
to different forms of regularization of (3.1). The system

(3.1) 1is already in the symmetric form corresponding to U,

L and so any regularization of the form (1.16) 1leads to

(1.14). The symmetric form of (3.1) corresponding to U
given (3.4) involves the transformation B = £'(p), a = q,
which is not invertible when p can ~hange sign. Alternati-
vely, we could obtain (1.14) for Uy by a regularization of
(3.1)

£ (P 0y * Gy

(3.15)

9~Py = (E'(P))
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which may or may not be physically reasonable. Some knowledge

of the physical dissipation mechanism is necessary to choose
the correct form of regularization and/or entropy inequality.
In view of the results of [1l, 17] it seems likely that this
is true even in the purely hyperbolic case. We conclude this
section by proving that

Theorem 3.4: The shocks allowed by (2.18), (3.3)

(alternatively (3.13)) are the limits of viscous profiles.
Proof: Let (p,»q,), (p_,q_) be two states which can

be connected by a shock, with p, > P_- -Let 6 Dbe such that

(3.7), (3.8) are satisfied (between (p;,é+) and (p_,q_)),

with sin® > C for definiteness. We wish to show the exist-

ence of a solution of (2.19), which becomes

P, -sin6(g'(p) - E[(po)) - cost (g~q,)

€316

q, -sin6(q-q,) - cos6(p-p,)

p(t») = p_, q(tw) = q_
F ks
It follows from (3.8) that q,-q_ has the same sign on
cosf, which we take positive. Let Q be the rectangle with
sides parallel to the p,q axes and (p_,q_), (p,,q,) at oppo-

site corners, as shown in Fig. 4. From (3.16) the orbit




L

e,

leaves § on all four sides.

%

N,
e e ——— ] S "_'*_—“*.—7\&(@# ) % ‘f)
<t s
e ST Feriad st e
) 0 i

I

(9-,%) v

_Fig. U4: Existence of viscous profile

Using the strong nonlinearity condition (3.6), it is
not difficult to prove that (p+,q+) is an improper node and
(p_,q_) is a saddle, with respect to the vector field gen-
erated by (3.16) [11]. This holds even if (p_;q_) is in
the elliptic region. It is also easily shown that there are
no other critical points in §, so that the orbit entering
the saddle from within @ must have come from (p,, q,).
This completes the proof, and also shows the uniqueness of

the orbit up to translation, as desired.

e -~ e —— —
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IV. A difference scheme for the small disturbance problem

: In this section we utilize the results above to construct
a finite difference approximation to (2.1), which automatic-
ally excludes unphysical solutions and whicﬁ approximates
(2.1) to second order in the mesh size even when the solu-
tion is not smooth. The geometry, boundary conditions, and

assumed form of the solution are shown in Fig. 5,

/'—\
,/r7i)shnk

L ey
Fig. 5: Transonic flow problem

in which Py > 0 and the smooth function ql(x) are given.
We assume that the solution is piecewise smooth, and of boun-
ded variation in x, uniformly in y. The shock curve will
reach the x-axis in general, but we assume that it does not
reach the lines x = L or x = 0.

 k k+1/2

The discrete variables pj, qj+1/2 are oriented as

shown in Fig. 6. The q's are oriented at the 0-points




et

k+1/2

and qj+l/2 is our

Ay
—“*'-",THL ui
& OI
H b 3 11711
4»‘?1 .
-Kw | D xLl e
(3 T 3=m =
il

ig. 6:  Mesh point orientation

approximation to q(x,y), for x,y in the rectangle
jAx<x<(j+1)Ax, kAy<y<(k+l)Ay. The p's are oriented at the

x-points in Fig. 63; however, their interpretation is more

e

complicated. Let

k AR
(h.1) uj+l/2 = 7(pj+pj+l)’

then in the rectangle (j-%)Ax<x<(j+%)Ax, (k-%)Ayiy‘(k+%)Ay,

our approximation to p(x,y) is piecewise linear, given by

g ad E ik
(]+§)Ax—x K x-(j-f)Ax

k
Ax ]uj-l/2 *a Ax ]

(4.2) PL(x,y) = [ M5_1/2"

The difference approximations determining the p?, qgiijg

are as follows:

P o e et s e e e e—— —— e -—— S ————
\ ‘ L\ o
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K41/2_kt1/2 kel K
S ol -D -
k Q)J l/zﬁyl LE R AyJ = 0, §21,24...,M=1, k=0,1,...,N-13
| ¥ -
k 12 , k.2  k+1/2 k-1/2
(p:,+) =(p:) GRin i g
] . Ax . = _J*L/QAYJ*’l/z > O’ j:O’ M_]-, k‘o’]a .+« sN;
Kk k K k K k+1/2 k-1/2
Civa/a¥3-172° (Mag ot Wasy ptWa 1/ 9343727934172
(4.5) al == Lt i
3Ax% Ay
1 . k

R K
= cExtMi45/2%545/27 V543725543720

k

YOS 1725541727

K K
U3 1/2%5-1/2""5-3/2%5-3/2]

Er G5, Cj+l/2 = g((j+1/28x), ¢ a nonnegative CE

function chosen so that ¢ > 0 in a region containing the sh

shock, and ¢ = 0 near the boundaries in x, so that (4.5)

does not require any p-values outside the rectangle.
We first show that the difference scheme (4.3-4.5) sat-

isfies a discrete form of the inequality (1.14) for the

entropy function (2.8). Let ¢§ = ¢(jAx,kAy), ¢ a nonnega-

tive Cg test function; multiply (4.3) by

k+l/2, k+1l/2

qs Qs
ax by (21712

|l 7
J
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and (4.5) by Ax Ay pk ¢¥ ; add and sum over ],k
A2 e A 2
We assume that the discrete variables are uniformly bounded,
and use the smoothness of ¢ and the test function ¢ re-

peatedly. After several partial summations, we obtain

K K 2 k K K 2.k 3
i Wivay2) * a1 /20 M1y a2 120 PO 00
ik #
g
$341/27 3-1/2
( . )
pHL/2_ k4172 K+l , K
b Legkt1/2y2,050 3 = qg+l/2(ﬂj+1/2gﬂj+l/2)
21/ 2 Ax Sihly/a2 2
K+l Kk
LIV I w3
Ay
Kk g
5 i%k(“j+3/2(€j+3/2¢j+3/2) -
K K 1/2, k X 1/2.2
= Wi4172%54172%541720 0 T tW5i172¢85-1/2%-1727 )

+

k k
0(Ax+Ay+Ax SEP Z|pj+l—pj|).
J
The left side of (4.6) is an approximation of

[[<Gp®+3a%r0,-pas,raxay;

‘\“
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the right side is a nonnegative term plus a remainder which
can be made small by suitable hypotheses, as in [13]. Thus
we have shown

Theorem 4.1: Assume that as Ax, Ay » 0, the discrete

solution obtained from (i.3-4.5) remains uniformly bounded,

and converges in measure to a limit pair of functions p,q,
with p of bounded variation in x, uniformly with respect

oo

to y. Then for any nonnegative ¢ €'C0,
2 ani 2
”(<§p +359 )¢>x-pq¢y)dxdy 2 ‘0,

which is the desired entropy inequality.

Nextlwe consider the order of écquracy of the difference
scheme. In regions where the solution is smooth and which
are away from the sonic line (p=0), each of the difference
equations is clearly of second order accuracy. Thus we
anticipate no trouble from the changiﬁg of the form of the
difference equations near the x-boundaries.

In regions where the solution is not smooth, it still
makes sense to determine to what order of accuracy a differ-
ence scheme approximates the weak form of a given differ-
ential equation. In the case of linear hyperbolic systems,
this is sufficient to determine the order of magnitude of the

error in distribution sense [13, 14]. To be precise, let

Fora—
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qh(x,y) be the function obtained by extension of the discrete
variables k+1/2. C is plecewise constant, and is our appr-

c c 285 qj*l/?’ ]h P S () sta s dn S dap]

oximation to q. Similarly, let pi, K =01 smealy be &

function of x, equal to the right side of (4.2), and let

Py, = ph(x,y) be the extension of the pﬁ with respect to

y. The function is piecewise linear in x, piecewise

Py
constant in y, and is our approximation to p.

Theorem 4.2: Suppose that as Ax, Ay »0 with Ay/Ax

fixed, the discrete solution Py is uniformly bounded

9p

and that is bounded variation in x, uniformly with

Py
respect to y. Then for any ¢ € C:, ' 1

2 2 2
(4.8) |Jj(ph¢x-qh¢y)dxdy| < 0(Ax“+ay”),
and
(4.9) [1]¢q, ¢ _-p, ¢ ddxdy| < 0(Ax2+Ay2) 4
% hy :
Proof: Let us begin with the second term in (4.8).

- quh¢ydxdy = Jth,y¢dxdy

I ( k*3/2 1<-1/2)I(j”)Ax

1
el CRTTIT e T g

z ( k+l/2_ k=1/2y 1 ¢ (x,y)dxdy + O(sz*Ayz)

(3+1)8x (k+1)Ay
9541727934172 &y J J

jAx kAy

AN ROSW T T = e ————r
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i
- s |
(qﬁiijé'q§+i;§) (k*ldby 3 2., 2
= Axdy } T j ¢ ((J+3)Ax,y)dy+0(Ax"+4y©)
j sk * kby
k+1/2 k-1/2
(g -q. )
o A [ k 2 2
AxAy jzk % ¥3541/2 + OLAx“+*Ay*©),;
(4.10)

using the piecewise constant form of qy and the smoothness

of ¢. We note in passing that for the linear relation (4.9),

both terms are treated in essentially this manner and (4.7)

follows from the difference equation (4.4). In (4.8), how,

ever, the quadratic term is of central impgrtance, and it is )
here that the peculiear interpretation (4.2) of the p?
is used. Let X be the space of continuous, piecewise lin-
ear functions of x, with nodes at the mesh points jAx.

For each k, pﬁex. Now the approximation of (pz)x in 4
(4.5) 1is just what would be obtained (with respect to the
x-variable) by Galerkin's method with the space X. (This

is also an explanation of why the entropy inequality (4.6)

was obtained.) Let YkEX be the piecewise linear extension
k
of the aj+l/2’ then
(k+1)Ay
(4.11) v ) - ZAJ o(x,y)dy| = 0(ax’+ay?) ‘
Y Jxay A

uniformly in x. Using the bounded variation of P> We

have from (4.11)

N S8 . i




I——

- T =
(k+1)Ay
2 ky2 4
p. ¢ _dxdy = -Ay ZI(p ). =— J ¢(x,y)dydx
JI h'x i h'x Ay KAy .
(4.12) = -Ay ZJ(pE)iYk + 0(Ax2+ay?)
k
k k k k k
(p. -M. ) Cus +ys 1l )

B #3727 M3-1/727 Wye1/2 3417242727 Kk 9. . 2
= AxAy.X A% aj+1/2+O(Ax +hy") .

Jk

Finally, multiply (4.5) by AxAy a?+l/2 and sum over
jsk. Using the smoothness of ¢, the aritificial viscosity

3+ay%), so (4.8) follows

term gives a continuation of 0(Ax
by comparison with (4.10) and (4.12). This concludes the
proof.

Finally, we describe a potentially helpful modification
of the difference scheme (4.3-4.5), corresponding to the
simple change of the variable p + p+B for a constant B8

to be determined empirically. The boundary conditions at

x =0 and x = L become p = B-po, and an additional term

k k
-2.8 p.+lAi.

is added to the left side of (4.5). This transformation
is equivalent, in the difference scheme, to adding a disper-

sion term of order BAx2p While such a term will not

xxx "
aid in the generation of entropy in the vicinity of a shock,
it may help in controlling the variation of Ph* This may be
a serious problem in some applications; in particular, the

fourth-order viscosity invariably leads to oscillatory, dis-

crete shock profiles.
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Appendix

On the nonexistence of weak shock-type discontinuities in

elliptic regions.

Levi Lustman, Nima Geffen
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Consider N conservation equations:

(A1) Vo!i = Ai (x,y,u) + B;(x,y,g) = 0 3 = dseeeaN
for u = {uj} J & Dgeengll
¥ & Lat, B1) x,y,u)
Let Ai, Bi be continuously differentiable (ECl) in all
their variables and: agél
A?-%%,B;=§€~ji

eq. (1) can be written as:

: 5l < j
1 9du 1 dus _
(A2) Aj-éT+Bjs.9_-_0
with summation convention on repeated indices.
Let (Al) be elliptic in a region E in u space
for (x,y) in QE, for which:
N

(A3) ] A - uBI)v] = 0= vt =0
L W j

for A, uw real and not both zero.




Equation (A3) is a requirement that no real charac-
teristics exist, or equivalently, that (Al) is elliptic.

It is symmetric in (x,y) and N has to be even, i.e. N=2m.

Let:

and:

S(gl) be the points on the shock polar emanat-
ing at Uy (for which a shock jump from u;p is compatible

with the conservation laws (Al).

e r—————————

’l‘.‘v—u—--'— e R
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Theorem (Al)

Y4, 1is an isolated point of s(u;) (hence no 'weak'
shocks near u,€E are possible).

Note that by continuity, there exists a neighborhood K
of u;, such that for all (2,m),(u,v)(%,m)ek=AT,BL(u)(2,m)

will leave (Al) elliptic. Let K be con-

vex, the claim is that there is no jump connection between
u; and uw € K for k # 1.

Proof:
Assume: u, € S(uy), u, € K, o # 0.
Then:
Bi(x,y,gl) - Bi(x,y,gz)

Al(x,y,gl) - Al(x,y,gz)

Let, for 0 & 6 £ IL:

=

%Mo) = al(x,y,(1-0)u; + uy)

B1(0) = Bl(x,y,(1-0)u; + 6u,)
we get:

(A*,BY)(0) = (Al,Bl)(x,y,gl)

at,phay = alBheoy,u,)
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and, using the mean-value theorem, there exist:

e}\,

i

GB i=1l,...,1, such that:
i i aal
A (x,y,gz) - AT(x,y,u;) = ag—l i
9=9A
i i api
B (x,y,gz) - B (x,y,gl) = 5 ; ei
=B

But we have:

T ——

i N .
dA™ _ i
o —jzl Aj (x,y,(l-e)g1 + 922) (22

agi N 4
= z B~
s - e

and since:

(1-8)u; + 6u, € K

7

we have:

for:

N Sl A el N s %
o= J X%(uj-uj) ) Bt (uJ—uj) i
551 n e At 551 j 2 1
E ok
Kj = Aj (x,y,(l-eA)gl + BAgz)
- S | i
%j = By (x,y,(1-0p)u; + 65u,)

(x,y,(1-0)u, + bu,) (u,

- uy)

=i

T

R B e A ok

i ari ﬂ'lﬂwi“‘” e -
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letting:
¥ g =, € K
) (EPRNG SR
¥ ey uy € K
we get:

(M -oH) e

contradicting the ellipticity condition (A3).

This proves the non existence of arbitrarily weak shocks
in elliptic fields, precludes the possibility of closed shock
polars in u space (e.g. the hodograph plane) and of "shock-
ed" elliptic flows about obstacles (with shock strength van-

ishing at infinite).

e —i e




